
Customer: Astra
Date: June 10th, 2022

This document may contain confidential information about IT systems and
the intellectual property of the Customer as well as information about
potential vulnerabilities and methods of their exploitation.

The report containing confidential information can be used internally by
the Customer, or it can be disclosed publicly after all vulnerabilities
are fixed — upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
Astra

Approved By Evgeniy Bezuglyi | SC Department Head at Hacken OU

Type ERC20 token; Staking

Platform EVM

Language Solidity

Methods Architecture Review, Functional Testing, Computer-Aided
Verification, Manual Review

Website https://astradao.org/

Timeline 02.05.2022 – 10.06.2022

Changelog
06.05.2022 – Initial Review
03.06.2022 – Second Review
10.06.2022 – Third Review

www.hacken.io

https://astra.finance

Table of contents
Introduction 4

Scope 4

Severity Definitions 5

Executive Summary 6

Checked Items 7

System Overview 10

Findings 11

Disclaimers 18

www.hacken.io

Introduction

Hacken OÜ (Consultant) was contracted by Astra (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is smart contracts in the repository:

Initial review scope
Repository:

https://github.com/astradao/astra-private
Commit:

309f76a
Technical Documentation:

Type: Whitepaper
Link:Public Facing ASTRA Whitepaper

Type: Public documentation
Link: https://docs.astradao.org/

Integration and Unit Tests: No
Deployed Contracts Addresses: No
Contracts:

File: ./astra-smartcontracts/main/version-6/astr.sol
SHA3: 7c29947d104a46fce101700c039f1f0d7eb144c4b1f1ecc549835d4c93eda617

File: ./astra-smartcontracts/main/version-6/lm-pool-erc721.sol
SHA3: 8d093055dc692792fa384bc0657017a98f3754aafea10b77238a48ee18d09f0d

File: ./astra-smartcontracts/main/version-6/upgrade/ERC20UpgradeSafe.sol
SHA3: ba7df049f29449ff84f72138a34582fe010ff774a81d2987bef1fa084ddb9354

Second review scope
Repository:

https://github.com/astradao/astra-private
Commit:

a2bbe59
Technical Documentation:

Type: Whitepaper
Link:Public Facing ASTRA Whitepaper

Type: Functional and technical requirements

Integration and Unit Tests: Yes
Deployed Contracts Addresses: No
Contracts:

File: ./astra-smartcontracts/main/version-6/astr.sol
SHA3: 37f4508bf220011de4791432f31ca91b80b67c9bc6c62897839644f11a8fab7b

File: ./astra-smartcontracts/main/version-6/lm-pool-erc721.sol
SHA3: 686ea61ace5b2512a3520750231e0ec71ef4556d969c4f7602ddb46f5cd66a91

www.hacken.io

https://github.com/astradao/astra-private
https://docs.google.com/document/d/1u1FMIWLVEywmKH23Y3fg-cg_j9WvHF2SHiYUlX7sQis/edit
https://docs.astradao.org/
https://github.com/astradao/astra-private
https://docs.google.com/document/d/1u1FMIWLVEywmKH23Y3fg-cg_j9WvHF2SHiYUlX7sQis/edit
https://drive.google.com/drive/folders/1VFsOtDZvMQW47ioYq3KUx1YyHfRGZwCm

Third review scope
Repository:

https://github.com/astradao/astra-private
Commit:

5e8676d1534685929fec2923bb9de49f9a488236
Technical Documentation:

Type: Whitepaper
Link:Public Facing ASTRA Whitepaper

Type: Functional and technical requirements

Integration and Unit Tests: Yes
Deployed Contracts Addresses:

astr.sol:
Proxy
Implementation

lm-pool-erc721.sol:
Proxy
Implementation

Contracts:
File: ./astra-smartcontracts/main/version-6/astr.sol
SHA3: f82e0da1dcbd68bffb5b8c14f5d8a3f3af66a878dc3704c6751baf6a12bfe088

File: ./astra-smartcontracts/main/version-6/lm-pool-erc721.sol
SHA3: ca496445a106c33fc865a5efb6a302f4d36adbd3fec99ecedde6aa9d1578f551

www.hacken.io

https://github.com/astradao/astra-private
https://docs.google.com/document/d/1u1FMIWLVEywmKH23Y3fg-cg_j9WvHF2SHiYUlX7sQis/edit
https://drive.google.com/drive/folders/1VFsOtDZvMQW47ioYq3KUx1YyHfRGZwCm
https://etherscan.io/address/0xe634edc395997e71e15055147f0d6f3d816e416c
https://etherscan.io/address/0x5739760b44378f581fcbeea2aee9d49f6524414f#code
https://etherscan.io/address/0x3Ffcf9727f3d4095A47834F244C42118e4Fef4FE
https://etherscan.io/address/0x1e3453a39a9e96213a36009f49f38d60df8fb249#code

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions.

Medium
Medium-level vulnerabilities are important to fix;
however, they cannot lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that cannot have a
significant impact on execution.

www.hacken.io

Executive Summary

The score measurement details can be found in the corresponding section of
the methodology.

Documentation quality
The Customer provided whitepaper, functional and technical requirements.
The total Documentation Quality score is 10 out of 10.

Code quality
The total CodeQuality score is 9 out of 10. Unit tests were provided, and
the official Solidity code style was followed. Files naming convention and
functions order rules are violated.

Architecture quality
The architecture quality score is 8 out of 10.

Security score
As a result of the audit, security engineers found 2 low severity issues.
The security score is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.7.

www.hacken.io

https://docs.google.com/document/d/1vpWmShFjGVkwHgX4rEmFhRcmnOZ-k6xEckkQjZkCmgE/edit#heading=h.1ci93xb

Checked Items

We have audited provided smart contracts for commonly known and more
specific vulnerabilities. Here are some of the items that are considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Passed

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Failed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Not Relevant

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Not Relevant

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106 The contract should not be destroyed

until it has funds belonging to users. Passed

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Not Relevant

Uninitialized
Storage
Pointer

SWC-109
Storage type should be set explicitly if
the compiler version is < 0.5.0. Not Relevant

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Not Relevant

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Passed

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless it is required.

Passed

Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Passed

www.hacken.io

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-109
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-114

Authorization
through
tx.origin

SWC-115
tx.origin should not be used for
authorization. Passed

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Passed

Signature
Unique Id

SWC-117
SWC-121
SWC-122

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id.

Passed

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes. Passed

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Passed

Presence of
unused
variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Passed

EIP standards
violation EIP EIP standards should not be violated. Not Relevant

Assets
integrity Custom Funds are protected and cannot be

withdrawn without proper permissions. Passed

User Balances
manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Passed

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Passed

Token Supply
manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
customer.

Passed

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

www.hacken.io

https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/

Style guide
violation Custom Style guides and best practices should

be followed. Passed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Repository
Consistency Custom

The repository should contain a
configured development environment with
a comprehensive description of how to
compile, build and deploy the code.

Passed

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be 100%,
with both negative and positive cases
covered. Usage of contracts by multiple
users should be tested.

Passed

Stable Imports Custom
The code should not reference draft
contracts, that may be changed in the
future.

Passed

www.hacken.io

System Overview

ASTRA DAO is a complex system using different investment strategies with
the following contracts:

● Token — simple ERC-20 token that mints all initial supply to the
specified contract. However, additional minting is allowed.

● LmPoolV3 — a contract that rewards users with ASTRA tokens for
deposit of their ERC721 tokens.

Privileged roles
● The owner can:

○ add a minter address.
○ add new tokens to the pool.
○ add new lp to the pool.
○ add new vault period.
○ set chef contract address in which users can eventually stake

their rewards.
○ withdraw all tokens from the Liquidity Pool contract.
○ distribute rewards between users.

● The initializer can:
○ initialize a contract.

Notice
The repository contains code that is out of the audit scope. We could not verify secureness
of such contracts.

www.hacken.io

Findings

Critical

1. Access violation.

The function is available for calling by everyone.

Any amount of tokens can be distributed between users in the pool,
and users can withdraw them. Eventually, the ERC20 Astra contract
will be drained.

Contract: lm-pool-erc721.sol

Function: distributeExitFeeShare

Recommendation: Validate ownership.

Status: Fixed (Revised commit: a2bbe5)

2. Missing file.

Missing import file IERC721Receiver.sol, line 12.

Therefore contract cannot be compiled.

Contracts: lm-pool-erc721.sol

Function: -

Recommendation: Add the missing file.

Status: Fixed (Revised commit: a2bbe5)

High

1. Token minting.

According to the tokenomics, maximum total supply is
100,000,000,000,000 (100 trillion), but the functionality allows the
owner to mint more.

Contracts: astr.sol

Function: mint

Recommendation: Remove the ability to mint more than stated in
tokenomics.

Status: Mitigated (The whitepaper has been updated)

2. Minter cannot be deleted.

The functionality allows adding a minter address. However, there is
no facility to delete it.

Therefore minter can not be revoked if necessary.

Contracts: ERC20UpgradeSafe.sol

Function: mintNewTokens

www.hacken.io

Recommendation: Allow to revoke minters.

Status: Fixed (Revised commit: a2bbe5)

3. The owner can withdraw all reward tokens.

The owner can withdraw all tokens from the contract from the LmPool
contract.

This may affect users' reward funds.

Contracts: lm-pool-erc721.sol

Function: emergencyWithdrawASTR

Recommendation: Remove the ability of the owner to withdraw user
rewards or update the documentation accordingly.

Status: Fixed (Revised commit: 5e8676)

4. Pausing all token transfers.

The functionality allows the owner to pause all the token transfers
anytime. Pausing functionality should be limited by clear contract
rules. The documentation does not mention the functionality of
transfers stopping.

Contracts: astr.sol

Function: pause

Recommendation: Remove pausing functionality or update the
documentation accordingly.

Status: Mitigated (The whitepaper has been updated)

5. Potential DoS.

The function iterates over all users in the specified pool.

Gas consumption can differ a lot between different transactions.
Possible DoS if the number of users is large enough.

Contracts:lm-pool-erc721.sol

Function: viewRewardInfo, updateBlockReward

Recommendation: Do not iterate over all users.

Status: Fixed (Revised commit: a2bbe5)

6. Potential DoS.

The function iterates over all pools and their users. Changes the
state every iteration.

Gas consumption can differ a lot between different transactions.
Possible DoS if the number of pools, users is large enough.

Contracts:lm-pool-erc721.sol

Function: distributeFlatReward
www.hacken.io

Recommendation: Do not iterate over all pools and users.

Status: Fixed (Revised commit: 5e8676)

7. Potential DoS.

The function iterates over all users in the specified pool. Changes
the state every iteration.

Gas consumption can differ a lot between different transactions.
Possible DoS if the number of pools, users is large enough.

Contracts:lm-pool-erc721.sol

Function: distributeIndividualReward

Recommendation: Do not iterate over all users.

Status: Fixed (Revised commit: a2bbe5)

Medium

1. Property never used.

Property rewardDebt declared for the UserInfo struct, mentioned in
the documentation, but never used.

Contract: lm-pool-erc721.sol

Functions: global declaration

Recommendation: Review and fix the logic.

Status: Fixed (Revised commit: 5e8676)

2. Dev address is unused.

Variable devaddr declared, established, but never used. Should
transfer ownership instantly to devaddr address upon contract
initialization like in the previous scope?

Contract: lm-pool-erc721.sol

Functions: global declaration

Recommendation: Review and fix the logic.

Status: Fixed (Revised commit: 5e8676)

Low

1. Floating pragma.

The contracts use floating pragma ^0.6.0, ^0.6.12.

Contract: ERC20UpgradeSafe.sol, lm-pool-erc721.sol, astr.sol

Recommendation: Consider locking the pragma version whenever possible
and avoid using a floating pragma in the final deployment.

Status: Fixed (Revised commit: a2bbe5)

www.hacken.io

2. Outdated Compiler Version.

Using an outdated compiler version can be problematic, especially if
publicly disclosed bugs and issues affect the current compiler
version.

Contract: lm-pool-erc721.sol, astr.sol

Recommendation: Use a recent version of the Solidity compiler.

Status: Reported

3. Unused functions.

_setupDecimals is defined but never used.

Contract: ERC20UpgradeSafe.sol

Function: _setupDecimals

Recommendation: Remove this function or make the contract abstract.

Status: Fixed (Revised commit: a2bbe5)

4. Unused variables.

ABP, highestStakerInPool, totalAllocPoint, timelock, coolDownStart,
are defined but never used.

Contract: lm-pool-erc721.sol

Function: -

Recommendation: Remove these variables.

Status: Fixed (Revised commit: a2bbe5)

5. State variables that can be declared constant.

To save Gas, constant state variable dayseconds should be declared
constant.

Contract: lm-pool-erc721.sol

Function: initialize

Recommendation: Add the constant attribute to state variables that
never change.

Status: Fixed (Revised commit: a2bbe5)

6. Overwhelmed code.

Unneeded reassignment is provided. dayseconds variable could be
defined already with actual value.

Contract: lm-pool-erc721.sol

Function: initialize

www.hacken.io

Recommendation: Update the code and use assignment in place of
declaration.

Status: Fixed (Revised commit: a2bbe5)

7. No events on state variables changings.

It is recommended to emit events on important state changes.

Contracts: lm-pool-erc721.sol

Functions: add, checkEligibleAmount, withdrawASTRReward

Recommendation: Emit events on important state changes.

Status: Fixed (Revised commit: a2bbe5)

8. Unused imports.

Imported
./common/ERC20.sol, ./common/EnumerableSet.sol, ./common/Context.sol
are not used.

Contracts: lm-pool-erc721.sol

Functions: -

Recommendation: Remove unused imports.

Status: Fixed (Revised commit: a2bbe5)

9. Confused variable name.

startTime variable is supposed to be block.number, not timestamp.

This may confuse whoever reads the contract.

Contracts: astr.sol

Function: -

Recommendation: Fix name appropriately.

Status: Fixed (Revised commit: a2bbe5)

10. Redundant require statement.

The checking if block.timestamp <= `cool down period plus 8 days` is
redundant because it has already been checked in the initial `if`
statement.

Contracts: lm-pool-erc721.sol

Function: withdraw

Recommendation: Remove the redundant require statement.

Status: Fixed (Revised commit: a2bbe5)

11. Documentation inconsistency.

www.hacken.io

Function signature `setTimeLockAddress(address)` mentioned in the
provided documentation but removed in the new audit scope.

Contracts: lm-pool-erc721.sol

Recommendation: Fix inconsistency.

Status: Reported

12. Redundant modifier.

The modifier nonReentrant is redundant because there are no
circumstances for reentrancy attacks.

Contracts: lm-pool-erc721.sol

Functions: withdrawASTRReward, deposit

Recommendation: Remove the redundant modifier.

Status: Fixed (Revised commit: 5e8676)

13. Unused import.

Imported
@openzeppelin/contracts-upgradeable/utils/AddressUpgradeable.sol is
not used.

Contracts: astr.sol

Recommendation: Remove unused import.

Status: Fixed (Revised commit: 5e8676)

www.hacken.io

Disclaimers

Hacken Disclaimer
The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered a sufficient assessment regarding the utility and
safety of the code, bug-free status, or any other contract statements.
While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

Technical Disclaimer
Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io

