
Audit Report
March, 2023

For

QuillAudits

https://audits.quillhash.com/smart-contract-audit

audits.quillhash.com

Astra DAO - Audit Report

A. Contract - IndicesPayment

B. Contract - ITokendeployer

C. Contract - PoolConfiguration

D. Contract - SwapV2

E. Contract - ITokenStaking

F. Contract - ChefV2

G. Contract - UniswapAmount

H. Contract - PoolV2

I. Contract - Governance

J. Contract - Timelock

K. Contract - BatchVote

L. indicesFeesSplit

M. Common Issues

Executive Summary

Checked Vulnerabilities

Techniques and Methods

Manual Testing

. .

. .

. .

. .

Table of Content

00

01

03

04

04

06

08

09

11

19

25

26

36

40

41

42

43

50

50

51. .

. .

. .

Functional Testing

Automated Testing

Closing Summary

audits.quillhash.com

Executive Summary

Astra DAO

Astra DAO is a decentralized and non-custodial automated crypto asset
allocator. Astra DAO provides convenient and practical access to crypto-
oriented investment strategies. ASTRA token is responsible for
governance of the whole ecosystem which can be earned through various
investment products/indices, participation units marketplace, user
staking, harvesting investment strategies profits.

December 7, 2022 to April 25, 2023

Manual Review, Functional Testing, Automated Testing etc.

The scope of this audit was to analyze Astra Dao smart contract codebase
for quality, security, and correctness.
https://github.com/astradao/astra-private/pull/37/
commits/88e9f90a2ac669a7d550a40f37a5945fe927376a

https://github.com/astradao/astra-private/
tree/9c617cc411364559291163927a67def8b50e4d69

Commit hash: 9c617cc411364559291163927a67def8b50e4d69

Contracts:-
- indicespayment.sol
- itoken.sol
- poolConfiguration.sol
- swapv2.sol
- itoken-staking.sol
- chefv2.sol
- uniswapAmount.sol
- poolv2.sol
- governance.sol
- timelock.sol
- batchVote.sol

https://github.com/astradao/astra-private/
commit/360a6c48bb55c5413d670c21e9d730f6257ddeff

Project Name

Overview

Timeline

Method

Scope of Audit

Fixed In

00

Astra DAO - Audit Report

https://github.com/astradao/astra-private/pull/37/commits/88e9f90a2ac669a7d550a40f37a5945fe927376a
https://github.com/astradao/astra-private/tree/9c617cc411364559291163927a67def8b50e4d69
https://github.com/astradao/astra-private/commit/360a6c48bb55c5413d670c21e9d730f6257ddeff

audits.quillhash.com

Executive Summary

00

High

Open Issues

Resolved Issues

Acknowledged Issues

Partially Resolved Issues

Low

30152

0 00 0

3

29

0

0

0

0

0

0

0

Medium Informational

78
Issues Found

High Medium

Low Informational

Note: https://github.com/astradao/astra-private/pull/41 has been Received for Audit on 17 Feb,2023

Astra DAO - Audit Report

Mainnet address:-

- SwapV2
- Chef(Astra/Lm staking)
- Uniswap utility
- Timelock
- GovernorAlpha(DAO)
- BatchVote
- Itoken
- PoolConf
- Indices(DAA/PoolV2)
- Indices Payment
- Indices fees split
- itoken staking

(Implementation)
(Implementation)

(Implementation)
(Implementation)

(Implementation)
(Implementation)
(Implementation)
(Implementation)
(Implementation)

https://etherscan.io/address/0x73E883b8924E1Ebc0299faAB828C3198489471eA
https://etherscan.io/address/0x9fd4046cff042e3b7685789c637337237ded25aa#code
https://etherscan.io/address/0xDFE672C671943411fc16197fb8E328662B57CE2C
https://etherscan.io/address/0x327339416778181799262780d1a4d28c46e0d1d0#code
https://etherscan.io/address/0x1Df154042d0a7F1Cd093D907094A8ba5d83dF6C0
https://etherscan.io/address/0xc80B0a04D51f3fd4C91e9D28525709261936Bed1
https://etherscan.io/address/0x2E1fb79129B3d44881bd56a82Bb7CBb7328B6143
https://etherscan.io/address/0xe8bac57870218ab398140286caca47b5157dd27f#code
https://etherscan.io/address/0x5E44c7aDDC64CDbc7472324C00F940a419741E1c
https://etherscan.io/address/0x8555dc3adcafb74b85d436a6eb7ee7befa9a6e9b#code
https://etherscan.io/address/0xc819F6FD420c514A7A2f380343cb67607b990a14
https://etherscan.io/address/0x5390b7F590EdBac0A730b321DBcb7AD61C71D640
https://etherscan.io/address/0xc77e021a1379a9cd742d752f537479dd6c12509a#code
https://etherscan.io/address/0x17b9B197E422820b3e28629a2BB101949EE7D12B
https://etherscan.io/address/0xf26995ebef4e45aecd07434f16bdff60cd62c49e#code
https://etherscan.io/address/0x726304E73C9cD0A2Df34070bD01699279F09BCAc
https://etherscan.io/address/0x934591736d71a7f0981a3fdcd83bb5fe3fbeae33#code
https://etherscan.io/address/0x0D994bcF071f060e477136A6fadD51a3163f34b0
https://etherscan.io/address/0x611818381340495de61e40b4c4a790a4d7e24308#code
https://etherscan.io/address/0x87e980034D3aA7879F3aB79a8c3CB2919bFb05F4
https://etherscan.io/address/0x2ddb30f677ad9de63c6d96b2b066fd801f8c7bf5#code

audits.quillhash.com 01

Medium

The issues marked as medium severity usually arise because of errors and deficiencies in the
smart contract code. Issues on this level could potentially bring problems, and they should
still be fixed.

Low

Low-level severity issues can cause minor impact and or are just warnings that can remain
unfixed for now. It would be better to fix these issues at some point in the future.

Informational

These are severity issues that indicate an improvement request, a general question, a
cosmetic or documentation error, or a request for information. There is low-to-no impact.

High

A high severity issue or vulnerability means that your smart contract can be exploited. Issues
on this level are critical to the smart contract’s performance or functionality, and we
recommend these issues be fixed before moving to a live environment.

Types of Severities

Open
Security vulnerabilities identified that must be resolved and are currently unresolved.

Resolved
These are the issues identified in the initial audit and have been successfully fixed.

Acknowledged
Vulnerabilities which have been acknowledged but are yet to be resolved.

Partially Resolved
Considerable efforts have been invested to reduce the risk/impact of the security issue, but
are not completely resolved.

Types of Issues

Astra DAO - Audit Report

audits.quillhash.com 02

Re-entrancy

Timestamp Dependence

Gas Limit and Loops

Exception Disorder

Gasless Send

Use of tx.origin

Compiler version not fixed

Address hardcoded

Divide before multiply

Integer overflow/underflow

Dangerous strict equalities

Tautology or contradiction

Return values of low-level calls

Missing Zero Address Validation

Private modifier

Revert/require functions

Using block.timestamp

Multiple Sends

Using SHA3

Using suicide

Using throw

Using inline assembly

Checked Vulnerabilities

Astra DAO - Audit Report

audits.quillhash.com 03

Techniques and Methods

Throughout the audit of smart contract, care was taken to ensure:

The overall quality of code.
Use of best practices.
Code documentation and comments match logic and expected behaviour.
Token distribution and calculations are as per the intended behaviour mentioned in the
whitepaper.
Implementation of ERC-20 token standards.
Efficient use of gas.
Code is safe from re-entrancy and other vulnerabilities.

The following techniques, methods and tools were used to review all the smart contracts.

Structural Analysis
In this step, we have analysed the design patterns and structure of smart contracts. A
thorough check was done to ensure the smart contract is structured in a way that will not
result in future problems.

Static Analysis
Static analysis of smart contracts was done to identify contract vulnerabilities. In this step, a
series of automated tools are used to test the security of smart contracts.

Code Review / Manual Analysis
Manual analysis or review of code was done to identify new vulnerabilities or verify the
vulnerabilities found during the static analysis. Contracts were completely manually analysed,
their logic was checked and compared with the one described in the whitepaper. Besides, the
results of the automated analysis were manually verified.

Gas Consumption
In this step, we have checked the behaviour of smart contracts in production. Checks were
done to know how much gas gets consumed and the possibilities of optimization of code to
reduce gas consumption.

Tools and Platforms used for Audit
Remix IDE, Truffle, Truffle Team, Solhint, Mythril, Slither, Solidity statistic analysis.

Astra DAO - Audit Report

audits.quillhash.com 04

Manual Testing

A. Contract - IndicesPayment

High Severity Issues
No issues found

No issues found

Medium Severity Issues

Low Severity Issues

A1. Hardcoded Index creation fee (astraAmount) is different from what mentioned in whitepaper

Recommendation

The astraAmount initialized into code is different from the amount of astra tokens that is
mentioned in whitepaper to create the index. In the whitepaper it is mentioned that “Creators
need to pay 5,000,000,000 Astra tokens to create an index”, But the hardcoded amount is
500e18 which does not match 5000000000e18.

Verify and change the astraAmount to correct the token amount.

Status

Astra Dao team’s comment: The amount was added for testing purpose and it will be
changed to the expected one using setAstraAmount().

Resolved

Astra DAO - Audit Report

audits.quillhash.com 05

Low Severity Issues

A2. Ownership transfer should be two step process

Description

Remediation

In indicesPayment contract transferOwnership() function takes newOwner and sets it to the
_owner variable in _setOwner() function. But sometimes it can happen that the current owner
might set a malicious account as owner which can be problematic for the project.

Owner transfership process can be changed to two steps where the owner will set
pendingOwner variable as new owner address and then the new owner who is going to take
over the contract can call _setOwner to take over the contract.

Status
Resolved

A3. Re-entrancy guard is unused

Description

Remediation

In indicesPayments code ReentrancyGuard has been inherited and initialized but
nonReentrant modifier has never been used for any of the functions.

If not used it can be removed from the code.

Status
Resolved

Informational Issues

Astra DAO - Audit Report

audits.quillhash.com 06

B. Contract - ITokendeployer

High Severity Issues
No issues foundNo issues found

No issues found

Medium Severity Issues

B.1 Pushing same address in mapping

Recommendation

addChefAddress() function is used to add chef contract address to the code. Here msg.sender
is getting pushed instead of _address variable which can cause the mapping to contain the
same address.

To resolve the issue change the address value parameter to _address variable. Also as
alladdress mapping is not used anywhere can be removed if not necessary.

Status
Resolved

Low Severity Issues

Astra DAO - Audit Report

audits.quillhash.com 07

Informational Issues

B.2 Spelling mistake in modifier

Description

Remediation

onlyOwner() modifier has been misspelled as onlyOnwer()

Please change the spelling from onlyOnwer to onlyOwner.

Status
Resolved

B.3 Unused code in contract

Description

Remediation

_setupDecimals() and beforeTokenTransfer() functions are unused.

The above mentioned functions _setupDecimals() and beforeTokenTransfer() can be removed.

Status
Resolved

Astra DAO - Audit Report

audits.quillhash.com 08

C. Contract - PoolConfiguration

High Severity Issues
No issues foundNo issues found

No issues found

Medium Severity Issues

C.1 whitelistDAOaddress() function allows multiple DAOs to exist

Recommendation

In poolConfiguration contract whitelistDAOaddress() function allows whitelisting of DAO
addresses to be interacted with. So for example there was supposed to be a change made to
the DAO contract and is added again with the function. The older version of DAO contract still
exists and can have or impact the decisions/values.

To remediate issue the value can be changed as a single variable to store DAO address instead
of having mapping.

Status
Resolved

C.2 Set fix fee limit

Recommendation

updateEarlyExitFees(), updatePerfees(), updateSlippagerate() are taking uint values to set fees
and rate, currently these functions are allowing less than 100 i.e maximum 99 percentage of
fees and slippage rate. The strict amount should be hard coded as a limit which would be less
than 99. so that in the worst cases it can’t be set 99 which is almost the amount.

set the maximum limit to less.

Status
Resolved

Low Severity Issues

Astra DAO - Audit Report

audits.quillhash.com 09

D. Contract - SwapV2

High Severity Issues
No issues foundNo issues found

No issues found

Medium Severity Issues

D.1 Add setter function to support new path

Recommendation

In contract the tokens are initialized in the initialize() function which acts as constructor.
Consider if the pool happens to be for a token which gets low on liquidity then it won’t be
possible to work with that pool anymore for the protocol considering the pool exists.

To remediate the issue and to add a new path a setter function can be added.

Status
Resolved

D.2 Out of gas issue can occur on initializing the contract

Recommendation

The contract’s initialize function takes _tokens address array which if is big enough can cause
the transaction to go out of gas.

To remediate the issue please make sure that token length should be fixed when the contract
is initialized.

Status
Resolved

Low Severity Issues

Astra DAO - Audit Report

audits.quillhash.com 10

D.3 Unused code can be removed

Description

Remediation

As the constructor is not taking any parameters, the line can be removed from the contract.

 constructor() public {}

The constructor can be removed.

Status
Resolved

D.4 Add a check for path with same tokens

Description

Remediation

Swapv2 has some functions that are getting used by other contracts, this contains functions
like getBestExchangeRate(), swapFromBestExchange(). these functions take tokenIn, tokenOut
token parameters. The case can happen where tokenIn and tokenOut entered are the same
and for these scenarios a check can be added so that the transaction can revert with a
meaningful error message.

Add check to revert the same tokenIn and tokenOut.

Status
Resolved

Informational Issues

Astra DAO - Audit Report

audits.quillhash.com 11

E. Contract - ITokenStaking

High Severity Issues

E.1 Calling restakeAstraReward() results in loss of funds for protocol

Recommendation

In contract itoken-staking if the user wants to withdraw tokens there is an option of staking the
rewards for the deposit which is made. And if it is called, the call goes to the
restakeAstraReward() function in which the function checks if the user has voted on the recent
proposal. If yes then rewards will be restaked but astra tokens are getting transferred to
masterchef contract which is chefv2 and to the user too. Which results in loss for the protocol.

To resolve the issue please remove the safeAstraTransfer() from the if block.

Status
Resolved

Astra DAO - Audit Report

audits.quillhash.com 12

Medium Severity Issues

E.2 restakeAstraReward() can revert on wrong _pid

Recommendation

Comment: The dev team said that pool0 will always be of astra tokens.

In contract itoken-staking user has option to restake astra rewards if he doesn’t want to get
slashed rewards. So while withdrawing, the user mentions their _pid from which the rewards
will be restaked. As the rewards will be astra tokens they should be going to pool0 in chefv2
contract. But if it is something else than that the function will revert because astra tokens
should always go to the pool0.

To resolve the issue first parameter can be kept as values 0 instead of _pid

Status
Resolved

E.3 Pool should be restricted to one iToken only

Recommendation

Currently while depositing and withdrawing deposit() and withdraw() functions are taking itoken
parameters this can increase the attack surface. malicious users can specify different itoken ids
while depositing and withdrawing. which can result in loss of funds deposited by other users.

Consider directly taking the token address from PoolInfo.lpToken which can be added while
creating a pool with add() similar to chefv2:add(). remove the _itokenId parameter in
deposit()and withdraw()

Status
Resolved

Astra DAO - Audit Report

audits.quillhash.com 13

E.4 LPToken should be added directly while adding pool

Recommendation

The Itoken and decimal value should be added directly while adding pool with add() instead of
adding in `itokenInfo` array with addItoken() to avoid scenarios where users can specify
different itoken ids while depositing and withdrawing, as mentioned in E.3.

Consider adding itoken address while adding pools.

Status
Resolved

E.5 _withdraw()sends itoken as well as astra of same amount

Recommendation

While withdrawing _withdraw() sends staked itoken amount back to the staker address on L800
but again it sends the same amount of astra back to the user using safeAstraTransfer() on L 804.

Consider verifying the business logic and remove the statement on L804 to send same amount
of astra.

Status
Resolved

E.6 Restakes in incorrect vault

Recommendation

It is mentioned in whitepaper "5.7.Rewards Distribution System>Claiming Rewards - iTokens
Staking & Liquidity Mining" on page 18 that "Claim 100% and restake in 90-days lockup" here in
restakeAstraReward() the staking of claimableReward is happening on L375 but it is not
staking the amount in 90 days (3 month) vault as mentioned in the whitepaper, instead it is
staking in six month vault.

Verify and change the vault used.

Status
Resolved

Astra DAO - Audit Report

audits.quillhash.com 14

E.7 In checkEligibleAmount function updateUserSlashingfees function totaldepositAmount,
 stkInfo.amount should be swapped

Recommendation

checkEligibleAmount() is calling updateUserAverageSlashingFees() when duration of staked
vault is not passed while calling withdraw(). while calling updateUserAverageSlashingFees() it is
passing totaldepositAmount and stkInfo.amount as previousDepositAmount and
newDepositAmount respectively, But it is incorrect as previousDepositAmount should be the
stkInfo.amount and newDepositAmount should be passed as totaldepositAmount (which is 0
in this case) while calling updateUserAverageSlashingFees(). Currently because of the incorrect
sequence of these arguments, the averageStakedTime is getting increased for that user and
because of that while claiming astra using claimAstra() the slashDays getting calculated is
getting decreased.

Change the sequence of the argument as mentioned above.

Status
Resolved

E.8 Rewards are different for same deposit amount after changing decimals of iToken

Recommendation

In contract itokendeployer owner can change decimals of itoken. So if the itoken with 6
decimals is staked in itoken-staking contract and when the rewards are checked then it comes
out to be less than the itoken with 18 decimals.
Eg.,
Amount(1000) itoken with 18 decimals was staked for 100 blocks then pending rewards =
4999.99

Amount(1000) itoken with 6 decimals was staked for 100 blocks the pending rewards = 3333.33

Please revisit the reward calculation formula after changing decimals if this is not the intended
behavior.

Status
Resolved

Astra DAO - Audit Report

audits.quillhash.com 15

Low Severity Issues

E.9 IToken staking gives the same reward for Different iTokens.

Recommendation

for depositing into different indexes different itokens get minted as a share of deposited
amount.
Let's say for getting 100 itoken-1 you need to deposit 100 stablecoins in index-1, for getting 100
itoken-2 you need to deposit 200 stablecoins in index-2. Here the amount of stablecoins you
deposited to get the same amount of itoken in index-2 is greater. When it comes to staking
these itokens in itoken-staking, for different itoken it gives same amount of reward so the
itokens for costly index will receive same rewards as compared to itokens for cheap index and
vice versa.

Check the business logic and change the code logic accordingly.

Status
Resolved

E.10 Unnecessary use of addVault() function

Recommendation

In itoken-staking contract there are vaults decided for months 0, 3, 6, 9, 12. For months 0, 6, 9,
12 they are initialized in the initialize() function of the contract. Even the owner decided to add
new month vaults such as 15, 18 still the multipliers which are related to them won’t be added
as there is no setter function which can be problematic and can cause issues in calculation of
rewards.

To resolve the issue addVault() function can be removed and vault for 3 month can be
initialized in initialize() function or if there are vaults which can be added such as 15, 18 or for
any month then please add setter function to set their multiplier values too.

Status
Resolved

Astra DAO - Audit Report

audits.quillhash.com 16

E.11 Cooldown period is not according to the whitepaper

Recommendation

On whitepaper page 14 "5.4.Astra Staking Model> Cool-down Period" it is mentioned that the
cooldown period would be of 7 days and , if the user fails to confirm the unstake transaction in
the 24h window, the cooldown period will be reset.

in the withdraw() logic on L747-748 the cooldown period is getting calculated with
user.cooldowntimestamp.add(SECONDS_IN_DAY.mul(coolDownPeriodTime) here
coolDownPeriodTime is getting set as 1 in initialize() and the contract does not have any
function to update coolDownPeriodTime. the mentioned formula calculates cooldown period
for 1 day only because coolDownPeriodTime is set to 1 in initialize.

Additionally if user fails to confirm withdraw() in 24 hrs window then cooldown perioid is not
getting reset.

Consider changing the coolDownPeriodTime assignment of 1 to 7 in initialize() and add
functionality to reset the cooldown period.

Status
Resolved

E.12 rewardDebt is getting overwritten in _withdraw() function

Recommendation

In the contract whenever rewards are accumulated they get stored in rewardsDebt variable and
rewardDebt is updated while restaking with restakeAstraReward but is also getting overwritten
in _withdraw() function.

To resolve the issue the variable should be updated in claim and restake only.

Status
Resolved

Astra DAO - Audit Report

audits.quillhash.com 17

E.13 Handle cool down period in different way

Recommendation

While withdrawing, users need to wait till the cooldown period ends. Currently user needs to
call withdraw() two times as first time the statement in if block will execute which will set
user.cooldown to true and user.cooldowntimestamp to current timestamp, in second
withdraw()call else block will execute which will check current block’s timestamp is greater than
user.cooldowntimestamp + cooldown period and then it calls internal _withdraw()to withdraw
amount.

Here, it takes two calls to withdraw the amount, the first one to set the timestamp for cooldown
period calculation. The functionality can be changed so the user can withdraw in one call and
the cooldown period will get checked according to something that was recorded before e.g last
deposited timestamp etc.

Add functionality as suggested in description.

Status

Comments: This is updated in whitepaper.

Resolved

E.14 decimalValue variable is calculated twice

Description

Remediation

In contract itoken-staking decimalValue variable calculation is done twice in the
stakingScoreAndMultiplier() function which increases gas cost.

To resolve the issue it can be declared locally once and use the assigned value later on for the
calculations.

Status
Resolved

Informational Issues

Astra DAO - Audit Report

audits.quillhash.com 18

E.15 Variable has no impact on calculations

Recommendation

In contract itoken-staking BONUS_MULTIPLIER which is constant is set to 1. As the value is set
to 1 it won’t be having any impact on any of the calculations. Also it is constant so you can’t
even change the value. So that makes the if and else if block do the same work in the
getMultiplier() function.

To resolve the issue please remove the variable which will help in saving gas or add a setter
function to change the value of the variable.

Status
Resolved

Astra DAO - Audit Report

audits.quillhash.com 19

F. Contract - ChefV2

High Severity Issues
No issues found

Medium Severity Issues

F.1 Withdraw sends astra tokens every time

Recommendation

While withdrawing deposited amount _withdraw() sends astra tokens everytime as it is using
safeAstraTransfer() on L854. In the scenario where the user deposits any other token in the
pool apart from the astra token, while withdrawing the astra tokens are getting sent back to
that user which is incorrect.

Consider sending the token amount for the specific token that the user deposited.

Status
Resolved

F.2 Pool should be restricted to one itoken only

Recommendation

Currently while depositing and withdrawing deposit() and withdraw()functions are taking itoken
parameters, this can increase the attack surface and may create issues as mentioned in itoken-
staking.

Consider directly taking the token address from PoolInfo.lpToken which is getting added in
add() function while adding pool.

Status
Resolved

Astra DAO - Audit Report

audits.quillhash.com 20

F.3 In checkEligibleAmount function updateUserSlashingfees function totaldepositAmount,
 stkInfo.amount should be swapped

Recommendation

checkEligibleAmount() is calling updateUserAverageSlashingFees() when duration of staked
vault is not passed while calling withdraw(). while calling updateUserAverageSlashingFees() it is
passing totaldepositAmount and stkInfo.amount as previousDepositAmount and
newDepositAmount respectively, But it is incorrect as previousDepositAmount should be the
stkInfo.amount and newDepositAmount should be passed as totaldepositAmount (which is 0
in this case) while calling updateUserAverageSlashingFees(). Currently because of the incorrect
sequence of these arguments, the averageStakedTime for these users is decreasing.

Change the sequence of the argument as mentioned above.

Status
Resolved

F.4 Withdrawing amount causes highestAstaStaker array to have some gaps/overriding values

Recommendation

Consider 100 highest users deposited amount to the contract. These users will be added to
highestStakerInPool mapping. After sometime if say 65 th user decided to withdraw his stakes
from pool the position at which his amount was in highestStakerInPool will be set to default
values. ie. struct values when deleted are set to default, creating a gap in highestStakerInPool
mapping. Now when new 101th user other than previous 100 users will deposit amount, at
that time when addHighestStakedUser() will be called then it'll go in the else block of the code
and will override the position of the 0th and when quicksort is called they will be sorted
according to their amounts leaving the gap/default value at the 0th position

Consider changing the code logic where it will replace these gaps of default (deleted) values Or
quickSort() can be called in removeHighestStakedUser() after deleting the value of
highestStaker on L 1090.

Status
Resolved

Astra DAO - Audit Report

audits.quillhash.com 21

Low Severity Issues

F.5 Cooldown period is not according to the whitepaper

Recommendation

On whitepaper page 14 "5.4.Astra Staking Model> Cool-down Period" it is mentioned that the
cooldown period would be of 7 days and , if the user fails to confirm the unstake transaction in
the 24h window, the cooldown period will be reset.
in the withdraw() logic on L747-748 the cooldown period is getting calculated with
user.cooldowntimestamp.add(SECONDS_IN_DAY.mul(coolDownPeriodTime) here
coolDownPeriodTime is getting set as 1 in initialize() and the contract does not have any
function to update coolDownPeriodTime. The mentioned formula calculates cooldown period
for 1 day only because coolDownPeriodTime is set to 1 in the initialize() function.
Additionally if the user fails to confirm withdraw() in the 24 hrs window then the cool down
period is not getting reset.

Consider changing the coolDownPeriodTime assignment of 1 to 7 in initialize() and add
functionality to reset the cooldown period.

Status
Resolved

F.6 Functions are missing return values

Recommendation

Functions in chefV2 like claimAstra() and restakeAstraReward() are missing return values but
are declared in function definition.

Please return appropriate values for the above functions

Status
Resolved

Astra DAO - Audit Report

audits.quillhash.comaudits.quillhash.com 22

F.7 Variable does not have any impact on calculations

Recommendation

The variable BONUS_MULTIPLIER is a constant and is set to 1 but is used in calculations anyhow
it won’t affect the values but is consuming gas only.

To resolve the issue please remove the variable as it consumes gas or don’t keep it as constant
if the multiplier can be changed.

Status
Resolved

F.8 Incorrect lp token status check in transferNFTandGetAmount()

Recommendation

transferNFTandGetAmount()has a require check to check if the lp token is added or not with
addUniswapVersion3().While checking this on L685, it should check for lpTokensStatus[_token1]
[_token0]. Currently it is checking for lpTokensStatus[_token0][_token1] on both lines
(L684,L685).

Change the token status check from token1 to token0 on L685 as mentioned in description.

Status
Resolved

F.9 rewardDebt is getting overwritten in _withdraw() function

Recommendation

In the contract whenever rewards are accumulated they get stored in rewardsDebt variable
and rewardDebt is updated while restaking with restakeAstraReward but is also getting
overwritten in _withdraw() function.

To resolve the issue the variable should be updated in claim and restake only.

Status
Resolved

Astra DAO - Audit Report

audits.quillhash.com 23

F.10 Handle cool down period in different way

Recommendation

While withdrawing users need to wait till the cooldown period ends. Currently user needs to
call withdraw() two times as first time the statement in if block will execute which will set
user.cooldown to true and user.cooldowntimestamp to current_timestamp, in second
withdraw()call else block will execute which will check current block’s timestamp is greater than
user.cooldowntimestamp + cooldown period and then it calls internal _withdraw()to withdraw
amount.
Here, it takes two calls to withdraw the amount, the first one to set the timestamp for cooldown
period calculation. The functionality can be changed so the user can withdraw in one call and
the cooldown period will get checked according to something that was recorded before e.g last
deposited timestamp etc.

Add functionality as suggested in description.

Status

Comments: This is updated in whitepaper.

Resolved

F.11 Deposit can be called from any contract

Description

Remediation

In chefV2 contract, there are 2 functions for deposit ie., deposit() and
depositFromOtherContract(). The difference in both the functions is, msg.sender being passed
to _deposit and a whitelist address check which can be called by an EOA or a contract hence
current name depositFromOtherContract() can be confusing. Also the deposit() function can be
called by any contract even if it is not whitelisted.

If there is a need for no contract check, it is recommended to add a check in both deposits.

Status

Comments: This function is kept to whitelist only Astra Dao contracts to deposit on some user’s behalf.

Resolved

Informational Issues

Astra DAO - Audit Report

audits.quillhash.com 24

F.12 Redundant code/statements

Description

Remediation

L452 "&& slashDays >= 0" is redundant as slashDays is getting declared on L449 as an
unsigned integer variable which is going to be 0 or greater than it when values are getting
assigned.
In _deposit() on L776-778 there's redundant check and assignment because
user.maxMultiplier is getting assigned on L779. Similarly on _withdraw() on L846-848 theres
redundant check and assignment because user.maxMultiplier is getting assigned on L849.

1.

2.

Consider checking and removing the redundant statements.

Status
Resolved

Astra DAO - Audit Report

audits.quillhash.com 25

G. Contract - UniswapAmount

High Severity Issues
No issues foundNo issues found

No issues found

No issues found

Medium Severity Issues

Low Severity Issues

Informational Issues

G.1 Unused code can be removed

Description

Remediation

As the constructor is not taking any parameters, the line can be removed from the contract.

Also the following imports are not used inside the contract, hence they can be removed:

 constructor() public {}

import "@uniswap/v3-core/contracts/libraries/FullMath.sol";
import "@uniswap/v3-core/contracts/libraries/UnsafeMath.sol";
import "@uniswap/v3-core/contracts/libraries/FixedPoint96.sol";

Consider removing above mentioned things if not used.

Status
Resolved

Astra DAO - Audit Report

audits.quillhash.comaudits.quillhash.com 26

H. Contract - PoolV2

High Severity Issues
No issues foundNo issues found

Medium Severity Issues

H.1 Couldn’t find depositFromDaaAndDAO() in master chef (chef v2)

Description

Remediation

Comment: Added a function called depositFromOtherContract in chefv2 contract.

withdrawUserAmount() calls depositFromDaaAndDAO() on the chefv2 contract, but chefv2
doesn't has the function name depositFromDaaAndDAO() which results in failed transaction
when stakeEarlyFees and/or stakePremium would be true.
Chefv2 contains a function named depositFromOtherContract() instead of
depositFromDaaAndDAO().

Consider changing the function name so that the call won’t fail.

Status
Resolved

Astra DAO - Audit Report

audits.quillhash.com 27

H.2 Calculatefee() is unable to reduce the fee (feeRate) over time

Description

Remediation

Fixed In: https://github.com/astradao/astra-private/commit/fad0c03addf9464cd1d522bca1...

The calculatefee() is getting used to calculate the early exit fee by getting early exit fee percent
(using getEarlyExitfees) from the PoolConfiguration contract. According to whitepaper the
early exit fee should decrease over time and after 6 months the fee should be zero
The early exit fee is not getting decreased over a time and even after 6 months it deducts
initial fee rate percent of the given amount.The issue here is caused by the feesValue variable
in formula becoming 0 because of precision loss which then gets used for subtraction.
Example: For pending or current balance.
Let's say there are 100e18 (100000000000000000000) pending/total tokens. And if the fee rate
is 2 (percent) then after withdrawing the amount of fee deducted would be 2e+18.
Now while withdrawing on L 966,967 the fee is getting calculated for pending and total
amount. According to the formula let's say we are withdrawing after 591500 blocks then it
should deduct half of fee rate. That is 2/2 =1 percent.

Here the last feesValue would be 2% of 100e18 as it subtracts 0. It shows that it is unable to
decrease the fee over time because of precision loss

 uint256 feeRate = 2;
 uint256 Averageblockperday = 6500;
 uint256 feeconstant = 182;
 uint256 blocks = 591500;
 uint feesValue = feeRate.mul(blocks).div(100); // 11830

// 0.01 = 0 (here feesValue would be 0 as solidity doesn’t support decimals)
 feesValue = feesValue.div(Averageblockperday).div(feeconstant);
 feesValue = _amount.mul(feeRate).div(100).sub(feesValue); //_amount

Fee rate can be multiplied with some temporary value like 1e12 which
can be again divided after getting the last answer to take care of fractional part.

Status
Resolved

Astra DAO - Audit Report

https://github.com/astradao/astra-private/commit/fad0c03addf9464cd1d522bca1632ecce0e8f067

audits.quillhash.com 28

H.3 Fees are not getting calculated correctly

Description

Remediation

In current code the fees are not getting calculated accordingly the formula and fees are not
getting reduced correctly.

 function calculatefee(
 address _account,
 uint _amount,
 uint _poolIndex
) internal view returns (uint256) {
 // Calculate the early exit fees based on the formula mentioned above.
 uint256 feeRate = (IPoolConfiguration(_poolConf).getEarlyExitfees()) *
 1e12;
 uint256 startBlock = initialDeposit[_account][_poolIndex];
 uint256 withdrawBlock = block.number;
 uint256 Averageblockperday = 6500;
 uint256 feeconstant = 182;
 uint256 blocks = withdrawBlock.sub(startBlock);
 if (blocks >= 182 * 6500) {
 return 0;
 }
 uint feesValue = feeRate.mul(blocks).div(100);
 feesValue = feesValue.div(Averageblockperday).div(feeconstant);
 feesValue = (feeRate.div(100).sub(feesValue)).mul(_amount);
 return feesValue / 1e12;
 }

Change the formula in the way where fees will get reduced. The changes may look like this:

Status
Resolved

Astra DAO - Audit Report

audits.quillhash.com 29

H.4 Block elapsed are getting calculated from initial deposit

Description

Remediation

Early exit fee is calculated from initial deposit which can be misused.
In calculatefee() on L736 the startblock is getting set as initialDeposit. Which is getting set in
poolIn() L864 at the time of first deposit.A User can deposit some amount at the start and
withdraw it instantly, initializing the initialDeposit time and existingUser. After that he can
benefit from this for reducing the early exit fee.
For example, a user can deposit a big amount for a short period of time (less than 6 months)
and could withdraw without deducting a fee if the difference between initial deposited block
and current block is greater than 6 months, where initial deposited block set at at the first
deposit.

Calculate average staked time of the user for a pool and use it for calculating the fees.

Status
Resolved

H.5 Change itoken share calculation

Description

Remediation

getItokenValue() calculates how much itoken shares to mint. In "if else" block on L843 the
indexValue that is getting used is calculated by using getPoolValue(). This getPoolValue()
function calculates it everytime for index token balances on L1218. tokenBalances are getting
added in buytokens() on L765. So this amount of itoken will get updated first when pool
threshold gets reached while someone is depositing and when that pool isn't rebalanced the
poolIn() calls buytokens().
Now there can be other deposits after threshold reaches, so this amount will get added to the
pending amount as it is not getting converted to index tokens. But now when anyone is
depositing, the itoken share is getting calculated by fetching the best exchange rate for current
index token balances of that pool and the pending amount is not getting considered while
calculating this amount in getPoolValue().

Consider adding the current pending amount while getting index value from getPoolValue().

Status
Resolved

Astra DAO - Audit Report

audits.quillhash.com 30

Low Severity Issues

H.6 Rewards will always get slashed in these scenario

Recommendation

In the scenario where governance started in 1st month and other users start staking next
month, now because these users have missed some proposals or they couldn't vote because
they started late, the rewards of these users will get slashed as
GovernorAlpha:getVotingStatus() will return false.
According to whitepaper for first 90 days the top 100 wallets can vote, in this case if there
would be some proposals, users apart from these top 100 wallets will miss the governance
and that's why the reward will get slashed for these users as getVotingStatus() will return
false.

1.

2.

Verify the business logic.

Status
Resolved

H.7 No contract level check for paying to create index

Recommendation

White Paper states that ‘Creators need to pay 5,000,000,000 Astra tokens to create an index’.
But there's no contract level check which checks the amount is paid. In this case the index
can be created by anyone without paying astra tokens as addPublicPool() is a public function.

Add a contract level check to check if the user paid the astra token fee required for creating
the index.

Status
Resolved

Astra DAO - Audit Report

audits.quillhash.com 31

H.8 Take address and uint type instead of arrays

Recommendation

poolIn() is taking an array of _tokens and _values , the functionality of poolIn() requires that it
_tokens and _values length should be less than 2 i.e 1 and it checks it by restricting length of
these arrays to <2 in require check. As only one address and uint is needed and arrays can
consume more gas than a single address type variable, input parameters of poolIn() can be
changed to address and uint type instead of address[] and uint[].

Change the input parameters to address and uint types as suggested above.

Status
Resolved

Informational Issues

H.9 Remove isEnabled from PoolUser struct

Description

Remediation

The is enabled boolean variable in PoolUser struct is not getting used and can be removed

Remove redundant is enabled boolean variable.

Status
Resolved

H.10 Unused events

Description

Remediation

Event WithdrawnToken() on L 587 is never used in contract hence is redundant.

Consider removing the declared WithdrawnToken event if not getting used.

Status
Resolved

Astra DAO - Audit Report

audits.quillhash.com 32

H.11 Redundant variables assignment

Description

Remediation

These are some redundant variable assignments:
On L 876 and L 877 redundant assignment of values to storage variables : returnedTokens
and returnedAmounts is getting used and are declared on L 872, 873 . and are getting
assigned to _TokensStable and _ValuesStable which are storage variables, after that these
variables are getting used to push baseStableCoin address and weight respectively which is
getting passed to swap() call on L889.
Redundant assignments in updatePool(): _tokens and _weights local variables are getting
assigned to other local variables newTokens and newWeights. These are local to local
variable assignments and are redundant.
L 760 in buytokens() assignment of "buf3" memory to "buf" storage type variable.
In withdraw() on L266 while calculating value of earlyfees, earlyfees local variable which
would be 0 is getting added in calculation. As the earlyfees is getting declared in the
function and never had any value assigned to it before,it is redundant addition before
assignment.

Here, these redundant assignments to storage variables can be removed and memory
variables can be used instead.
Assignment of local to local variable can be removed and local variable can be used directly.
Check and remove assignment to storage variable if not needed.
Don’t add earlyfees to the calculated fee.

Status
Resolved

1.

2.

3.
4.

1.

2.
3.
4.

Astra DAO - Audit Report

audits.quillhash.com 33

H.12 Redundant type casting

Description

Remediation

In poolIn() on L897 , _tokens array and baseStableCoin are both address types and there's
no need to cast them again to address type while comparing
In getItokenValue() on L840 in the condition the typecasting of 0 to uint is not needed and
can be removed.

1.

2.

Remove the address() and uint() used for typecasting as mentioned above.

Status
Resolved

H.13 Redundant function

Description

Remediation

The withdrawPendingAmount() internal function is not getting used in the contract.

Consider removing redundant functions.

Status
Resolved

H.14 Average number of blocks per day can vary

Description

Remediation

It's not guaranteed that after exactly 6 months these blocks will reach the 6500*182 count
as block creation time depends on mining process and network activity hence blocks per
day can vary.

Timestamp can be used instead of block.number to get an accurate measure of 6 months as
timestamps can be trusted by +- 15 mins.

Status
Acknowledged

Astra DAO - Audit Report

audits.quillhash.com 34

H.15 Limitation while setting/finding percentage

Description

Remediation

In calculatefee() the fee is calculated by getting the fee percent value from PoolConfiguration
using this on L735: ‘IPoolConfiguration(_poolConf).getEarlyExitfees()’
PoolConfiguration has a function named updateEarlyExitFees() which can be used to set the
fee percent value. It is required that the value should be less than 100 and in poolv2, the
contract uses 100 as denominator which means the percentage is getting calculated on the
scale of 100 (100 would be 100% of fee).

The fees cant be set less than 1 percent here as solidity does not support decimals so we need
to multiply and divide with more than 2 zeros.
So here while setting fee in poolConfiguration less than 1000 can be allowed.
Let's say, for finding 0.5 percent fee of an amount (let's say 100). 5 can be set as a fee rate.
So, 100e18 * 5 / 1000 gives 5e+17 (0.5 in ether form)
In the formula amount will get multiplied with the fee rate and this will get divided by 1000.

Verify the business logic , in case there's need of setting fee in decimals, the denominator
value can be increased as shown in description. Also to protect user finds, it is
recommended to have a check where fees can’t be set more than 10-20%.

Status
Resolved

Astra DAO - Audit Report

audits.quillhash.com 35

H.16 require statement without error message

Description

Remediation

L1122 has this check require(_tokens[i] != ETH_ADDRESS && _tokens[i] != WETH_ADDRESS)
which checks if the token is not ETH and WETH address. The required function doesn't have
an error message so if the transaction reverts, it would be difficult to debug.

Consider adding an error message to avoid this confusion when the transaction reverts.

Status
Resolved

H.17 Require check can be added

Description

Remediation

In case user deposits something and pendingAmount is not 0, then while withdrawing, the
user can't use stakePremium=true because totalAmount for that user would be 0 and
buyAstraToken() will try to call the getBestExchangeRate() on swap contract
(swapv2.getBestExchangeRate() => swapv2.getV3Rate() => uniswapV3Quoter.quoteExactInput)
which will revert as it will call swap() with 0 amount.
References: v3-core/UniswapV3Pool.sol at main

Add require check which will revert the transaction when totalAmount will zero and
stakePremium would be true while depositing.

Status
Resolved

Astra DAO - Audit Report

https://github.com/Uniswap/v3-core/blob/main/contracts/UniswapV3Pool.sol#L608

audits.quillhash.com 36

I. Contract - Governance

High Severity Issues

I.1 Approved proposals maybe impossible to queue, cancel or execute

Recommendation

The propose() function of the GovernorAlpha contract allows proposers to submit proposals
with an unbounded amount of actions. Specifically, the function does not impose a hard cap
on the number of elements in the arrays passed as parameters (i.e., targets, values, signatures
and calldata).
As a consequence, an approved proposal with a large number of actions can fail to be queued,
canceled, or executed. This is due to the fact that the queue, cancel and execute functions
iterate over the unbounded targets array of a proposal, which depending on the amount and
type of actions, can lead to unexpected out-of-gas errors.

To avoid unexpected errors in approved proposals, consider setting a hard cap on the number
of actions that they can include.

Status
Resolved

Astra DAO - Audit Report

audits.quillhash.com 37

Medium Severity Issues

I.2 Votes can be double spent

Description

Remediation

The function castVote() and castVoteBySig() uses chef’s stakingScoreAndMultiplier() function to
calculate the votes. In this function, a user can call this vote function multiple times which can
keep adding up the votes multiple times for a single user. In case of castVoteBySig(), signatures
can be copied from transaction data and used by the proposer to make the proposal win.

It is recommended to check if the user has already voted on a proposal, the total votes should
be overwritten instead of adding them if the whole amount is considered when calculating the
votes.

Status
Resolved

Low Severity Issues

I.3 Flash-loan protections

Recommendation

While calling castVote(), users' votes are calculated using `stakingScoreAndMultiplier()` from
chefV2 contract. As this function recalculates score on withdrawals and deposits, it is
possible to manipulate it in a single transaction affecting the number of votes casted.

To prevent flash-loans of voting power to negatively affect governance dynamics, the
governance contract should ensure withdrawal and deposits should not happen in the same
block or make sure, the contract uses scores from the previous block instead of the current
block.

Status
Resolved

Astra DAO - Audit Report

audits.quillhash.com 38

I.4 Missing check for voters for first 90 days

Recommendation

It is mentioned in whitepaper that for 90 days, only top holders will be voting on DAO but no
such check was found in contract:

During the first 90 days after the Astra network goes live, DAO governance will be performed by
the top 100 wallets with the highest number of staked Astra tokens. After the first 90 days, there
will be no limitations, and everyone can participate

It is recommended to check if the total time since deployment is less than or equal to 90 days,
only top stakers should be able to vote. Missing this check can lead to external votes which can
impact the proposal decision as well.

Comments: Astra Dao team mentioned that this condition is valid for first 90 day and the
initial launch already happened in August 2022.

Status
Resolved

I.5 Anyone can cancel the proposal

Recommendation

The function cancel() in GovernorAlpha is an external function without msg.sender check.

It is recommended to check if the proposal is canceled either by the proposer or admin as
AstraDAO takes decisions on fundamental changes with governance. Proposals can be
manipulated which can lead to loss of trust from stakers.

Status
Resolved

Astra DAO - Audit Report

audits.quillhash.com 39

I.6 Unused return value in castVoteBySig() function

Recommendation

In function castVoteBySig() function is returning _castVote() function but function definition
of castVoteBySig() has not defined any return value.

Consider adding return value variable in function

Status
Resolved

I.7 Value do not match according to whitepaper

Recommendation

In governance contract proposalTokens value is set as 50000000*10**18 ie., 5e25 but in
white paper the value is 5000000000*10**18 ie., 5e27

Please consider changing value in contract according to the whitepaper.

Status
Resolved

Informational Issues

I.8 Unused variable in contract

Description

Remediation

There are some variables which are not used in the contract like:
 - IHolders public topTraders;
 - uint256 public startTime; (only initialized and not used in the contract context)

It is recommended to remove unused variables from the contracts.

Status
Resolved

Astra DAO - Audit Report

audits.quillhash.comaudits.quillhash.com 40

I.9 Transaction-Ordering Dependence

Description

Remediation

Timlock executes the data passed from governance in the execute() function in the same
order it was declared.

It is important to take care of the order while creating a proposal to ensure it doesn’t revert or
get blocked due to this.

Status

Comments: Astra Dao team mentioned this will be taken care of off-chain.

Acknowledged

J. Contract - Timelock

High Severity Issues
No issues foundNo issues found

No issues found

No issues found

No issues found

Medium Severity Issues

Low Severity Issues

Informational Issues

Astra DAO - Audit Report

audits.quillhash.com 41

K. Contract - BatchVote

High Severity Issues
No issues foundNo issues found

No issues found

No issues found

Medium Severity Issues

Low Severity Issues

Informational Issues

K.1 Gas Limit and Loops

Description

Remediation

The function castVoteBySigs() uses `for` loop without max length check.

To avoid out of gas reverts, it is recommended to have a max length check.

Status
Resolved

Astra DAO - Audit Report

audits.quillhash.com 42

L. indicesFeesSplit

High Severity Issues
No issues foundNo issues found

No issues found

Medium Severity Issues

Low Severity Issues

L.1 Events can be added for critical actions.

Recommendation

Whenever certain significant privileged actions are performed within the contract, it is
recommended to emit an event about it. When these events are thoroughly emitted in
contracts, it makes it easier to query events on-chain.

Consider emitting an event whenever certain significant changes are made in the contracts
which need to be notified or noted.

Status
Resolved

L.2 Redundant calculation

Recommendation

In checkUpkeep() function, subtraction and addition of remaining variables is happening on
L95 and L96 with _currentContractBalance and rewardAdded respectively.
After every distribute() function call, the remaining variable’s value becomes 0 so in this way
it's subtracting and adding 0 which is redundant.

Verify the logic and remove the redundant subtraction and addition of variables.

Status
Resolved

Astra DAO - Audit Report

audits.quillhash.com 43

M. Common Issues

High Severity Issues
No issues foundNo issues found

Medium Severity Issues

M.1 Centralisation issue in contracts

Description

Remediation

Contracts such as indicesPayments, itokendeployer, chefv2, itoken-staking, poolConfiguration
contain functions which are only controlled by admin/owner. If for some reason a private key
is leaked for the owner then a malicious user can take over and control some part of the
project and cause issues to the protocol.

To remediate the issue we suggest using multisig.

Comments: AstraDAO team will transfer the ownership to DAO and the community will have
the control of the complete platform.

Status
Resolved

M.2 Use of old solidity version(s)

Description

Remediation

Some contracts are using old solidity versions mentioned below :
- IndicesPayment, IToken, PoolConfiguration, PoolV2, governance, timelock, : 0.5.17
- SwapV2, ItokenStaking, chefv2,uniswapAmount, BatchVote: 0.6.12
Using an old version prevents access to new Solidity security checks.

Use the latest solidity compiler version in order to avoid bugs introduced in older versions.

Status
Resolved

Astra DAO - Audit Report

audits.quillhash.comaudits.quillhash.com 44

Low Severity Issues

M.3 Contracts without storage gap.

Recommendation

Some contracts are inheriting ReentrancyGuard , a context contract. This ReentrancyGuard,
context doesn't have a storage gap. It may cause a storage collision while upgrading the logic
contract that is inheriting this ReentrancyGuard.

For example: The problem can occur because there is no storage gap variable in the currently
used ReentrancyGuard So in the case where in an updated/new logic contract newly used
ReentrancyGuard introduces new storage variable(s) and the layout that proxy would be using
would be according to the old logic contract where it will start other variable values in the
layout after the first (and only one) variable value (_notEntered) of ReentrancyGuard.

Same can happen while adding more storage variables in context contract

Use updated ReentrancyGuardUpgradeable , ContextUpgradeable with storage gaps from
OpenZeppelin. Also check other inherited contracts and use them from OpenZeppelin
upgradeable contracts if the contract that is inheriting functionality is upgradeable contract
logic.

Status
Resolved

M.4 Deposited amount should be greater than 0.

Recommendation

In chefv2 and itoken-staking, deposit functionality allows to deposit 0 amount in the pool.
require check can be added to prevent from unintended outcomes if user deposits 0
amount.

Add require check to check deposited amount is greter than 0, if not it should revert.

Status
Resolved

Astra DAO - Audit Report

audits.quillhash.com 45

Informational Issues

M.5 Variables can be changed to immutable to save gas

Description

Remediation

Some variables are only changed once in contract but are public which takes a bit more gas
than immutable.

a. IUniswapV2Router public sushiswapRouter, IUniswapV2Router public uniswapV2Router,
 IUniswapV3Router public uniswapV3Router in swapV2 contract
b. coolDownPeriodTime, coolDownClaimTime in chefV2 contract

Consider changing variable types to immutable if only changed once in contract.

Comments: Due to different networks and initialisation in constructor, not possible to make
it immutable or constant.

Status
Resolved

M.6 Comments are not matching with functionality

Description

Remediation

Some comments in the code are not matching the smart contract functionality and which
can create confusion sometimes
 - buytokens() contains a comment that `this can only be called by poolIn function` but
 updatePool is also calling buyTokens().

Consider changing comments to avoid confusion.

Status
Resolved

Astra DAO - Audit Report

audits.quillhash.com 46

M.7 Missing event emission for important changes

Description

Remediation

For functions updateEarlyExitfees(), updatePerfees(), updateMaxToken(),
updateSippagerate(), addStable(), removeStable() there is no event emitted in
poolConfiguration contract.

For functions set() in chefV2 contract

Add events for owner only state changing functions in itoken-staking, indicesPayment.

1.

2.

3.

Consider adding events to track changes made to the code.

Status
Resolved

M.8 Unused events

Description

Remediation

Event WithdrawnToken() on L 587 is never used in contract hence is redundant.

Consider removing the declared WithdrawnToken event if not getting used.

Status
Resolved

Astra DAO - Audit Report

audits.quillhash.com 47

M.9 Inefficient logic for updating highest stakers

Description

Remediation

While experimenting with deposit function, we found that as number of users went above
100, the gas limit reached 2 M which will take very high gas for deposits. Refer the
screenshot attached.

Try to optimise it with a more efficient algorithms to avoid high gas cost for deposit on which
the whole staking mechanism depends.

Status
Acknowledged

Astra DAO - Audit Report

audits.quillhash.com 48

M.10 General recommendations

In Poolv2 initialDeposit can be renamed to initialdepositBlocknumber or something
meaningful.

! operator can be used instead of comparing the value with == false in indicesPayments
contract in deposit function for checking stablecoin to save gas

Update the OZ contract version that is getting used is old in future problems may occur
when it comes to using old contract/library which may have a bug in old version.

Many of the functions from contracts can be made external instead of keeping them as
public.

- swapFromBestExchange() from swapv2
- addDaaaddress(), updateDecimalValue() from itokendeployer
- addPublicPool(), updatePool() from poolv2

First (0th) pool should be astra's pool.
- It is necessary that the 0th pool in chefv2 should be astra's pool as in some smart

contracts it is assumed that 0 th pool would be astra's pool e.g in pool:stakeAstra() it
deposits in 0 pool.

- 0th pool for astra should be created in initialize() to avoid the possibility of creating the
first pool of any other token instead of astra.

The updateRewardRate() is getting called twice while calling restake from withdraw. They
can be called single time saving gas in both chefV2 and itoken-staking contracts.

In chefv2 and itoken-staking, following code can be removed:

 if (user.maxMultiplier == 0) {
 user.maxMultiplier = MULTIPLIER_DECIMAL;
 }

While rebalancing same token the check can be added to skip the swapping
In the rebalancing process pool owners need to provide new token addresses so that old
index tokens can be converted to new ones, if the same addresses are provided as new
addresses the swap2() function swaps old token to base stablecoin and then back to new
token which was similar to old one. The code logic can be added to skip the swapping of
same tokens.

1.

2.

3.

4.

5.

6.

7.

8.

Astra DAO - Audit Report

audits.quillhash.com 49

M.10 General recommendations

Contracts can be divided into multiple files(like itoken-staking and chefv2 were very
similar, so fixes or changes can be missed hence recommended to use a common
helper contract instead of same code in both the contracts

The contracts use block.timestamp and block.number, which are not good proxies for
time because of issues with synchronization, miner manipulation and changing block
times hence should not be relied on for precise calculations of time.

Follow the proper naming convention and style from the Solidity style guide, which will
help readers to understand contract functionality more easily.

9.

10.

11.

Astra DAO - Audit Report

https://docs.soliditylang.org/en/latest/style-guide.html

audits.quillhash.com 50

Test to check how balance will work out
Check if difference in pool and amount yields in same rewards
check rewards after changing decimals
checking PID if it reverts

More than one address should be able to withdraw from single pool
Multiple user should be able to deposit more than one time
Should revert when reentered while depositing using ERC777 hooks
Should be able to deposit with multiple pools
Half of the fees are getting decreased when user is withdrawing after 3 months
Fees are getting decreased when user is withdrawing ahead in the time (after 6 months)
Should be able to buy and stake astra while withdrawing (stakePremium is true)
Should be able to buy and stake astra while withdrawing (stakeEarlyFees is true)
Should revert if totalAmount is zero and stakePremium is true while withdrawing

Checking restakeAstraReward() for correct multipliers
Check max multiplier with restake
Check max multiplier with nft restake
Check max multiplier with nft restake with increased time
Check max multiplier with nft restake for 12 months
Check restakeAstraReward for 12 months
Test max multiplier(NFT) when it will increase
Test max multiplier with nft restake with increased time(Multiplier will increase)
Checking restakeAstraReward for multiple users (multiplier will increase)

Some of the tests performed are mentioned below

itoken-staking

poolV2

chefV2

Functional Testing

Astra DAO - Audit Report

No major issues were found. Some false positive errors were reported by the tools. All the other
issues have been categorized above according to their level of severity.

Automated Testing

audits.quillhash.com 51

Astra DAO - Audit Report

Closing Summary

Disclaimer

In this report, we have considered the security of the Astra Dao. We performed our audit
according to the procedure described above.

Some issues of High,Medium, Low and informational severity were found, Some suggestions
and best practices are also provided in order to improve the code quality and security
posture.

QuillAudits smart contract audit is not a security warranty, investment advice, or an
endorsement of the Astra Dao Platform. This audit does not provide a security or correctness
guarantee of the audited smart contracts.

The statements made in this document should not be interpreted as investment or legal
advice, nor should its authors be held accountable for decisions made based on them.
Securing smart contracts is a multistep process. One audit cannot be considered enough. We
recommend that the Astra Dao Team put in place a bug bounty program to encourage further
analysis of the smart contract by other third parties.

audits.quillhash.com

700+
Audits Completed

700K
Lines of Code Audited

$16B
Secured

About QuillAudits

QuillAudits is a secure smart contracts audit platform designed by QuillHash Technologies.
We are a team of dedicated blockchain security experts and smart contract auditors

determined to ensure that Smart Contract-based Web3 projects can avail the latest and best
security solutions to operate in a trustworthy and risk-free ecosystem.

Follow Our Journey

Astra DAO - Audit Report

audits.quillhash.com
https://twitter.com/quillaudits
https://www.linkedin.com/showcase/quillaudits
https://t.me/QuillAudits
https://www.reddit.com/r/QuillAudits/
https://medium.com/quillhash/smart-contract-audit/home
https://discord.gg/WYb8Gfz8yy
https://www.youtube.com/channel/UC5Yt_8qEaAr-PiTMmGBuPCQ/videos

Audit Report
March, 2023

For

audits.quillhash.com

audits@quillhash.com

Canada, India, Singapore, United Kingdom

QuillAudits

https://audits.quillhash.com/smart-contract-audit
https://audits.quillhash.com/smart-contract-audit

