
Customer: Astra
Date: August 29th, 2022

This document may contain confidential information about IT systems and
the intellectual property of the Customer as well as information about
potential vulnerabilities and methods of their exploitation.

The report containing confidential information can be used internally by
the Customer, or it can be disclosed publicly after all vulnerabilities
are fixed — upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
Astra.

Approved By Evgeniy Bezuglyi | SC Department Head at Hacken OU

Type Vesting

Platform EVM

Language Solidity

Methods Architecture Review, Functional Testing, Computer-Aided
Verification, Manual Review

Website https://astradao.org/

Timeline 18.04.2022 – 29.08.2022

Changelog
22.04.2022 – Initial Review
10.06.2022 – Second Review
29.08.2022 – Third Review

www.hacken.io
2

https://astra.finance

Table of contents
Introduction 4

Scope 4

Severity Definitions 5

Executive Summary 6

Checked Items 7

System Overview 10

Findings 11

Disclaimers 15

www.hacken.io
3

Introduction

Hacken OÜ (Consultant) was contracted by Astra (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is smart contracts in the repository:

Initial review scope
Repository:

https://github.com/astradao/astra-private
Commit:

094078482cb6671d3610426edd4167c6c621985b
Technical Documentation: Yes
JS tests: Yes
Contract:

File: ./astra-smartcontracts/main/version-6/treasury-vesting.sol
SHA3: c1434c1951b60915205a52c70504c298202e8846968e0f22d4beee54

Second review scope
Repository:

https://github.com/astradao/astra-private
Commit:

5e8676d1534685929fec2923bb9de49f9a488236
Technical Documentation: Yes
JS tests: Yes
Contract:

File: ./astra-smartcontracts/main/version-6/treasury-vesting.sol
SHA3: 5ccc743dce353089ced1862b0c4104feda52507c480f5800de49990e

Third review scope
Repository:

https://github.com/astradao/astra-private
Commit:

5e8676d1534685929fec2923bb9de49f9a488236
Technical Documentation: Yes
JS tests: Yes
Deployed Contracts Addresses:

Proxy: https://etherscan.io/address/
0xaA2Da8F75A6F7C37dd2A3EdcCBF7897759C9C119#code

Implementation: https://etherscan.io/address/
0x5b4d61760fae5fce7f362a600e038207fab1de5f#code
Contract:

File: ./astra-smartcontracts/main/version-6/treasury-vesting.sol
SHA3: 5ccc743dce353089ced1862b0c4104feda52507c480f5800de49990e

www.hacken.io
4

https://github.com/astradao/astra-private
https://github.com/astradao/astra-private
https://github.com/astradao/astra-private
https://etherscan.io/address/0xaA2Da8F75A6F7C37dd2A3EdcCBF7897759C9C119#code
https://etherscan.io/address/0xaA2Da8F75A6F7C37dd2A3EdcCBF7897759C9C119#code
https://etherscan.io/address/0x5b4d61760fae5fce7f362a600e038207fab1de5f#code
https://etherscan.io/address/0x5b4d61760fae5fce7f362a600e038207fab1de5f#code

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they cannot lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that cannot
have a significant impact on execution

www.hacken.io
5

Executive Summary

The Score measurements details can be found in the corresponding section of
the methodology.

Documentation quality
The Customer provided appropriate functional and technical requirements.
The total Documentation Quality score is 10 out of 10.

Code quality
The total CodeQuality score is 10 out of 10. Code is easy to read.

Architecture quality
The architecture quality score is 10 out of 10. The structure is clear.

Security score
As a result of the audit, security engineers found 2 medium and 1 low
severity issues. The security score is 8 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 8.6.

www.hacken.io
6

https://docs.google.com/document/d/1vpWmShFjGVkwHgX4rEmFhRcmnOZ-k6xEckkQjZkCmgE/edit#heading=h.1ci93xb

Checked Items

We have audited provided smart contracts for commonly known and more
specific vulnerabilities. Here are some of the items that are considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Passed

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Failed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Not Relevant

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106 The contract should not be destroyed

until it has funds belonging to users. Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Failed

Uninitialized
Storage
Pointer

SWC-109
Storage type should be set explicitly if
the compiler version is < 0.5.0. Not Relevant

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Not Relevant

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Not Relevant

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Not Relevant

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless it is required.

Passed

Race SWC-114 Race Conditions and Transactions Order Passed

www.hacken.io
7

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-109
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-114

Conditions Dependency should not be possible.

Authorization
through
tx.origin

SWC-115
tx.origin should not be used for
authorization. Not Relevant

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Passed

Signature
Unique Id

SWC-117
SWC-121
SWC-122

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id.

Not Relevant

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Passed

Presence of
unused
variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Passed

EIP standards
violation EIP EIP standards should not be violated. Not Relevant

Assets
integrity Custom Funds are protected and cannot be

withdrawn without proper permissions. Passed

User Balances
manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Not Relevant

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Not Relevant

Token Supply
manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
customer.

Not Relevant

Gas Limit and
Loops Custom Transaction execution costs should not

depend dramatically on the amount of Passed

www.hacken.io
8

https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/

data stored on the contract. There
should not be any cases when execution
fails due to the block gas limit.

Style guide
violation Custom Style guides and best practices should

be followed. Passed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Repository
Consistency Custom

The repository should contain a
configured development environment with
a comprehensive description of how to
compile, build and deploy the code.

Passed

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be 100%,
with both negative and positive cases
covered. Usage of contracts by multiple
users should be tested.

Passed

www.hacken.io
9

System Overview

Astra is a mixed-purpose system that includes the contract from the audit
scope:

● TokenVesting — simple vesting contract with the ability to connect
Chainlink Keeper for automated vesting releasing. Airdrop function
for p2p giveaways is provided.

Privileged roles
● The owner has the ability to:

○ create vestings
○ revoke vestings if a revocable parameter was provided on

creation
○ withdraw unvested assets
○ update period for Chainlink Keeper automated releasing

Some keypoints for user
● The owner can revoke a vesting if, on creation, such a parameter was

provided. On revoking, all vested tokens till the moment are
automatically released to the beneficiary account.

www.hacken.io
10

Findings

Critical

No critical severity issues were found.

High

No high severity issues were found.

Medium

1. Potential Gas limit exceeding

A loop around an only increasing array may exceed Gas in the future
when the array becomes too big.

This could lead to the breaking of the automated tool.

Contract: treasury-vesting.sol

Function: performUpkeep

Recommendation: implement an array of only actual vesting ids,
perform automation only for those ones.

Status: Fixed (second scope)

2. Unchecked integer overflow/underflow

Unchecked math is a common cause of losing assets and double-spending
attacks. This particular case may cause such problems if the provided
token violates ERC-20 standard.

Leaving math unchecked may become dangerous, along with other errors.
It may cause problems in future development.

Contract: treasury-vesting.sol

Functions: multisendToken, getLastVestingScheduleForHolder

Recommendation: provide corresponding checks.

Status: Fixed (second scope)

3. Possible locking of Ether

Empty receive and fallback functions may cause locking of Ether on
the smart contract without any ability to transfer it to another
account.

Leaving payable receive and fallback functions on a contract that
does nothing with Ether may lead to unpleasant results for users who
accidentally call the contract with attached Ether.

Contract: treasury-vesting.sol

Functions: receive, fallback

www.hacken.io
11

Recommendation: remove these functions.

Status: Fixed (second scope)

4. Check-Effect-Interaction pattern violation

This pattern is designed to prevent reentering attacks, but it saves
Gas and keeps the project’s code clear.

Violation of the Check-Effect-Interaction pattern may cause problems
in future development.

Contract: treasury-vesting.sol

Function: revoke

Recommendation: put any external calls or calls that make those ones
inside at the end of the function.

Status: Reported

5. Chainlink automation may be prevented

A user may force call performUpkeep function to prevent next
automated upkeep.

It may happen because the keeperLastUpdatedTime variable is updated
even if the upkeep is not done. The variable is used in the
validation of the upkeep applicable, so automated upkeep may never
happen.

Contract: treasury-vesting.sol

Function: performUpkeep

Recommendation: update the variable only when upkeep is applicable
and done.

Status: New

Low

1. Unused events

Events Released and Revoked are defined but never used.

Contract: treasury-vesting.sol

Function:

Recommendation: if mentioned events should be emitted, do this or
remove them.

Status: Fixed (second scope)

2. Unused modifier

Modifier onlyIfVestingScheduleExists is defined but never used.

Contract: treasury-vesting.sol
www.hacken.io

12

Recommendation: if mentioned modifier should be used, do this or
remove it.

Status: Fixed (second scope)

3. Boolean equality

Boolean constants can be used directly and do not need to be compared
to true or false.

Contract: treasury-vesting.sol

Functions: performUpkeep, _computeReleasableAmount, revoke,
onlyIfVestingScheduleExists, onlyIfVestingScheduleNotRevoked

Recommendation: remove the equality to the boolean constant.

Status: Fixed (second scope)

4. Functions that can be declared as external

To save Gas, public functions that are never called in the contract
should be declared as external.

Contract: treasury-vesting.sol

Functions: addUserDetails, revoke, withdraw, getWithdrawableAmount,
computeNextVestingScheduleIdForHolder,
getLastVestingScheduleForHolder

Recommendation: the functions above should be declared as external.

Status: Fixed (second scope)

5. Copy-pasting of well-known contracts

It is better to import well-known contracts from the initial source,
for example, from the OpenZeppelin repository. These contracts are in
development, so importing them from open libraries will make code
more flexible.

Contract: treasury-vesting.sol

Imports: SafeMath, IERC20, ERC20, SafeERC20, Ownable
(OwnableUpgradeable), Context, Initializable

Recommendation: change local imports to imports from the initial
source.

Status: Fixed (second scope)

6. Mixing levels of abstraction

Several view functions create abstraction around contract data
defined, but they are not used in the contract code or used
particularly.

Contract: treasury-vesting.sol

www.hacken.io
13

Functions: getVestingSchedulesCount, getVestingSchedule,
getCurrentTime

Recommendation: provide abstraction levels consciously.

Status: Fixed (second scope)

7. Outdated compiler version

Using an outdated compiler version can be problematic, especially if
publicly disclosed bugs and issues affect the current compiler
version.

Contract: treasury-vesting.sol

Recommendation: use a recent version of the Solidity compiler.

Status: Reported

www.hacken.io
14

Disclaimers

Hacken Disclaimer
The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered a sufficient assessment regarding the utility and
safety of the code, bug-free status, or any other contract statements.
While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

Technical Disclaimer
Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io
15

